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In the present paper we present a phenomenological description of droplet dynamics in a bifurcating
channel that is based on three-dimensional numerical experiments using the Phase Field theory. Droplet
dynamics is investigated in a junction, which has symmetric outflow conditions in its daughter branches.
We identify two different flow regimes as the droplets interact with the tip of the bifurcation, splitting
and non-splitting. A distinct criterion for the flow regime transition is found based on the initial droplet
volume and the Capillary (Ca) number. The Rayleigh–Plateau instability is identified as a driving mech-
anism for the droplet breakup close to the threshold between the splitting and non-splitting regime.
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1. Introduction

Droplet dynamics is a very common phenomenon that can be
observed in everyday life, for instance during rainfall and in your
kitchen sink. Due to their ubiquitous occurrence with fascinating
physical phenomena they have attracted the attention of scientists
for more than a century. Nonetheless, many flows involving drop-
lets are yet not fully understood. This is a direct consequence of the
complex physical picture formed by the competition between
hydrodynamic and free-surface forces, in addition to the wetting
phenomenon that governs the nature of the interaction between
the interface and the solid surface.

During the last decade there has been a rapid growth of droplet
microfluidic applications, which has resulted in an increased inter-
est in flow physics at the micro scale. In these applications it is of
utmost importance to obtain well-defined droplet behaviors as
they traverse geometrically complex networks of channels.

One avenue of droplet microfluidics is the use of droplets as
compartments for a desired physical phenomenon such as mixing,
as shown by Garstecki et al. (2005). Mixing in micro scale is a well-
known obstacle, since it is merely driven by molecular diffusion.
One direction to follow in order to foster mixing is emulsion, which
can be realized by design of droplet–droplet interaction. The po-
tential use of an emulsion technique is often limited by the possi-
bility to precisely control the droplets size distribution. Passive
droplet formation, in a device requiring no moving parts, have
been demonstrated in a flow focusing device by Anna et al.
ll rights reserved.

).
(2003) and by geometrically mediated droplet division in a k junc-
tion (Menetrier-Deremble and Tabeling, 2006) and droplet forma-
tion in T-junctions (Link et al., 2004). Droplets can also be
introduced in microfluidic devices to perform specific tasks, where
they have shown promise as flow parameters to perform logical
operations (Prakash and Gershenfeld, 2007) and used to code/de-
code various signals (Fuerstman et al., 2007).

The importance of understanding droplet and bubble dynamics
in complex networks goes well beyond its relevance to design and
applications in microfluidic technology. They are also widely
encountered in medical technology, where they are used as vehi-
cles for drug transport, part of medical treatment strategies (gas
embolotherapy) or an undesired bi-product of a clinical treatment
(air embolism). Air embolism occurs as an air bubble enters the
vascular system that may have a dangerous or even fatal outcome,
if appropriate measures are not taken. As the bubble traverses
through the vascular system it might lodge in one of its micro-cir-
culations occluding the natural blood flow, causing ischemia (Bull,
2005). If a bubble should be trapped in one of the critical sections
in the body such as a capillary in the brain or in a coronary circu-
lation the outcome could be disastrous. Embolotherapy on the
other hand is a medical treatment strategy that exploits bubbles
and their free surfaces (Bull, 2005), where a bubble is introduced
in order to occlude the blood flow to certain parts of the tissue thus
excluding its oxygen supply.

The medical relevance of embolism and embolotherapy has ini-
tiated experimental investigations of bubbles in artery and capil-
lary geometries (Calderon et al., 2005; Calderon et al., 2006;
Eshpuniyani et al., 2005), in an attempt to predict which blood ves-
sel it will occlude. Different flow regimes for bubble splitting and
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lodging were observed. Eshpuniyani et al. (2005) found the non-
splitting bubbles to be sensitive to gravity, with regard to which
branch it would choose to lodge into. Baroud et al. (2006) made
a similar observation about the disturbance sensitive nature of slug
flow in a symmetric Y-junction. For velocities above a certain
threshold the long, low viscous, liquid plugs divided asymmetri-
cally as they propagated into a junction that was filled with air.
The initial perturbation was believed to originate from a small
imperfection, near the tip of the bifurcation, in the fabrication of
the channel, as the fastest finger was always associated with the
same branch.

In contrast to the vast amount of experimental results on drop-
let and bubble transport in complex geometries the literature on
numerical experiments is scarce. Historically, computational mul-
tifluid dynamics has been restricted to rather simple geometries.
As a result there is available today a great deal of knowledge about
droplet and bubble dynamics in straight pipes and channels
(Bretherton, 1961; Taylor, 1960; Aussillous and Quere, 2000).
Numerical prediction of two-phase flows in T-junctions have been
previously demonstrated by van der Graaf et al. (2006) with the
Lattice Boltzman method and, low resolution simulations, per-
formed by De Menech et al. (2008) and De Menech (2006) with
the Phase Field method. We recognize that numerical results on
droplet dynamics in Y-junctions are elusive. Manga (1996) investi-
gated the motion of drops in a Y-junction with equally sized
daughter branches with the boundary-integral method (Pozrikidis,
2001). He based his analysis on the assumption of a channel flow of
Stokes type ðRe� 1Þ. His two-dimensional simulation results indi-
cated that the drops have a tendency to follow the channel branch
with the highest flow rate, and that two drops could interact at the
tip of the bifurcation. Such a droplet–droplet interaction points at a
plausible mixing effect by emulsification.

In order to numerically capture all physical aspects of droplet
dynamics in complex geometries there are several obstacles that
need to be overcome both in terms of modeling and in the numer-
ical treatment. First, such simulations should rest on a physically
sound description and numerically consistent treatment of com-
plex wetting phenomena and free-surface forces. The computa-
tional technology needs to be able to handle two or more phases
with different densities and viscosities that undergo topology
changes such as droplet breakup. We also need the capability to
deal with numerical domains of unstructured meshes. Solving
the Cahn–Hilliard and the Navier Stokes equations with a finite
element method appears as a computational platform realizing
these requirements, opening a window of opportunity for numer-
ical experiments on interfacial dynamics in complex geometries.

In the present paper we aim to elucidate parts of the physics
governing droplet dynamics in bifurcating channels. Our investiga-
tion is based on three-dimensional numerical experiments by solv-
ing the Cahn–Hilliard and the Navier Stokes equations with a finite
element method. A multiphase flow consisting of two binary
immiscible liquids is simulated in a bifurcating channel, which is
frequently encountered in medical technology and microfluidic
applications.

We seek in particular to define the parameter range that con-
trols the resulting droplet dynamics. In other words, for what crit-
ical condition does the droplet split or not as it interacts with the
tip of the bifurcation. To reduce the number of parameters that
might affect such phenomena and to isolate effects from the capil-
lary force, we consider here two phases with equal density and
viscosity. In what follows we will show that a type of Rayleigh–
Plateau instability, which is not captured in two-dimensional
simulations (Pozrikidis, 2001), can be a driving mechanism for
droplet breakup. Two distinct flow regimes are characterized, split-
ting and non-splitting droplets. A relation between the two re-
gimes has been identified, based on the initial droplet size and
the Capillary (Ca) number. We find the non-splitting flow regime
to inherit an unstable nature, which has a direct impact on the
mass flow distribution in the channel branches.

2. Mathematical formulation

2.1. The Phase Field theory

The Phase Field theory is based on the thermodynamical con-
sideration of the free energy of a binary system. The two compo-
nents are here assumed to be immiscible and separated by a
narrow diffuse interfacial region. By considering that two immisci-
ble components actually mix over an interfacial region van der
Waals (1893) proposed the idea of a diffuse interface. The compo-
sition profile of the interface can be seen as the competition be-
tween the random molecular motion and the molecular attraction.

Cahn and Hilliard (1958) derived the free energy by making a
multivariable Taylor expansion about the free energy per molecule,

f ¼ bWðCÞ þ a
2
jrCj2; ð1Þ

following here the Phase Field derivation and notation by Jacqmin
(1999), where C is an order parameter. The creation of an interface
is established by the competition between the bulk free energy
bWðCÞ, and the interfacial energy a

2 jrCj2 due to composition varia-
tions. a and b are constants that comes out directly from the Taylor
expansion, see Cahn and Hilliard (1958), and are proportional to
the surface tension coefficient r and the interface width �; b � r

�
and a � r�. The free energy functional W and the Phase Field param-
eters a;b and the mobility M control the interfacial dynamics and
width. W is taken as a double-well function, WðCÞ ¼ 1

4 ðC þ 1Þ2

ðC � 1Þ2, which will give the two equilibrium states at C = ±1. Integra-
tion over the volume of the systems gives the total free energy de-
fined by F ¼

R
X f dV . The functional derivative of F with respect to

the order parameter C gives rise to the chemical potential,

/ ¼ dF
dC
¼ bW0ðCÞ � ar2C: ð2Þ

By minimizing the chemical potential with respect to C we ob-
tain the equilibrium profile to the interface, here given in one

dimension as C0ðxÞ ¼ tanh xffiffi
2
p
�

� �
. � ¼

ffiffi
a
b

q
is the mean field thickness

and the surface tension is defined by the integral,

r ¼ a
Z 1

�1

dC0

dx

� �2

dx ¼ 2
ffiffiffi
2
p

3
a1

2b
1
2: ð3Þ

By taking into account the effects of the fluids motion a convec-
tion–diffusion equation is obtained, also referred to as the Cahn–
Hilliard equation

@C
@t
þ u � rC ¼ r � ðMr/Þ ¼ r � ðMrðbW0ðCÞ � ar2CÞÞ; ð4Þ

where the mobility M is considered as a constant. We require that
there is no flux of the chemical potential through the boundaries
of the domain, which is fulfilled by the Neumann boundary
condition

@/
@n
¼ 0; ð5Þ

where n is the normal vector to the boundary. The surface free en-
ergy contribution is postulated as (Carlson et al., 2009)

Fwall ¼
Z
½rSL þ ðrSV � rSLÞgðCÞ�dA; ð6Þ

where rðÞ is the surface energy between the three different phases;
liquid (L), gas (V) and solid (S). gðCÞ ¼ 0:5þ 0:75C � 0:25C3 is a
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smooth function between zero and one, and its derivative g0ðCÞ will
be non-zero only at the diffuse contact line. In Eq. (6) it is assumed
that the interface is at or close to equilibrium as it wets the solid
surface. h0 is the equilibrium contact angle, formed between the
tangent of the interface and the solid surface, given by Young’s
Law; cosðh0Þ ¼ rSV�rSL

r . Through the variational derivative of the total
free energy of the system, with respect to C, and integration by
parts, the natural boundary condition for the concentration at the
wall is obtained,

a
@C
@n
þ r cosðh0Þg0ðCÞ ¼ 0; ð7Þ

governing the diffusively controlled wetting at local equilibrium
(Carlson et al., 2009).

2.2. Governing equations for the motion of the fluids

Both phases are considered as incompressible in an isothermal
system,

r � u ¼ 0: ð8Þ

The interfacial two-phase flow is governed by Navier Stokes
equations,

q
@u
@t
þ ðu � rÞu

� �
¼ �rP þr � ðlðruþ ðruÞTÞÞ � Cr/; ð9Þ

where u is the velocity and P is the modified pressure (Jacqmin,
1999). q and l are the fluids density and dynamic viscosity, which
are equal in both phases. The last term is expressing the surface ten-
sion force that is based on the model proposed by Jacqmin (1999).
We impose a no-slip boundary condition at the wall u ¼ 0 and pre-
scribe a velocity profile at the inlet with the shape of a paraboloid.
To obtain a well-posed problem we apply a Neumann boundary
condition on the pressure at the inlet,

@P
@n
¼ 0: ð10Þ

At the outlets the pressure is defined with an essential bound-
ary condition P ¼ 0, and a Neumann boundary condition is used
for the velocities,

@u
@n
¼ 0: ð11Þ
Table 1
Deviation between the numerical and analytical pressure for different Cn numbers
and mesh resolutions. Dx is the mesh spacing and Perror is defined as the relative error
between the analytically and the numerically predicted pressure jump,
Perror ¼ 100 � 1� ðDPÞnumerical

ðDPÞanalytical

� �
.

Cn 0.04 0.04 0.06 0.08

Dx 0.013 0.02 0.02 0.027
Perror (%) 0.6 2.0 0.6 0.9
2.3. Scaling laws

The governing equations are made dimensionless based on the
characteristic parameters of the flow, giving the dimensionless
variables (denoted by �)

x ¼ Lcx�; t ¼ Lc

U
t�; P ¼ qU2P�; u ¼ Uu�; / ¼ 3r

2
ffiffiffi
2
p
�

/� ð12Þ

where Lc is a characteristic length scale and U is the reference veloc-
ity. By introducing this scaling into the Navier Stokes and Cahn–Hil-
liard equations we obtain their non-dimensional form, where the �
notation is left out,

r � u ¼ 0; ð13Þ
@C
@t
þ u � rC ¼ 1

Pe
r2/ ¼ 1

Pe
r2ðW0ðCÞ � Cn2r2CÞ; ð14Þ

q
@u
@t
þ ðu � rÞu

� �
¼ �rP þ 1

Re
r � ðlðruþ ðruÞTÞÞ � Cr/

Cn � Ca

� �
:

ð15Þ

Here four non-dimensional numbers appear:
Pe ¼ 2
ffiffiffi
2
p

U�Lc

3Mr
; Cn ¼ �

Lc
; Re ¼ qULc

l
; Ca ¼ 2

ffiffiffi
2
p

lU
3r

: ð16Þ

The Peclet (Pe) number expresses the ratio between advection
and diffusion. The Cahn (Cn) number expresses the ratio between
the interface width and the characteristic length scale. The Rey-
nolds (Re) number expresses the ratio between the inertia and
the viscous force. The Capillary (Ca) number expresses the ratio be-
tween the viscous and the surface tension force.

2.4. Computational technology

2.4.1. The numerical toolbox femLego
The computations have been carried out using the numerical

toolbox femLego (Amberg et al., 1999), a symbolic tool for solving
partial differential equations. The user has full control over the
mathematical modeling and the numerical solution procedure as
the partial differential equations, boundary conditions and numer-
ical solvers are all defined in a single Maple worksheet. The code
inherits adaptive mesh refinement and parallel computation capa-
bilities (Do-Quang et al., 2007).

Due to the stiff nature of the Cahn–Hilliard equation, great care
needs to be taken in the solution procedure in order to avoid
numerical instabilities. The equation is treated and solved in accor-
dance with Villanueva and Amberg (2006) with a type of precondi-
tioned Conjugate Gradient (CG) method. The Navier Stokes
equations are solved using a projection scheme, proposed by Guer-
mond and Quartapelle (1997). The non-linear convective term is
treated semi-implicitly permitting larger time steps during the
computations, its linear systems for the velocities and pressure
are, respectively, solved with a Generalized Minimal Residual
method and a CG method. A first order forward Euler scheme has
been applied for the time marching and all variables are discretized
in space using piecewise linear functions.

2.5. Model validation

2.5.1. The Laplace law
In order to assure that the mathematical modeling in three

dimensions is correctly implemented it has been validated against
the Laplace law. The Laplace law gives an analytical expression for
the pressure difference inside and outside of a static droplet or
bubble submerged in a liquid. This test does in particular concern
the treatment of the surface tension force that is directly balanced
by the pressure force.

We have measured the pressure jump for different mesh spac-
ing and Cn numbers. The Cn number gives the ratio between the
width of the diffuse interface and the characteristic length scale
in the flow, here being the droplet diameter d. The results are sum-
marized in Table 1, where we have kept the Ca ¼ 1; Pe ¼ 3� 10�3

and Re ¼ 1 fixed. These dimensionless numbers gives an analytical
pressure difference ðDPÞanalytical ¼ 8

ffiffiffi
2
p

=3. The numerical domain
has an extension of ½2d� 2d� 2d� and an equidistant mesh has
been applied. Table 1 is summarizing the relative error between
the computed and analytical pressure prediction for different Cn
numbers and mesh spacings, after eight time steps. It is noted that



Table 2
The relative deviation between the analytical and computed deformation parameter
is given for different Ca numbers. All other parameters have been kept constant
Re ¼ 0:01; Pe ¼ 103 ; Cn ¼ 0:06 and k ¼ 1 and the mesh is equidistant with a spacing
Dx ¼ 0:02.

Ca 0.15 0.1 0.08 0.06

Derror (%) 2.8 1.1 0.8 1.0

Fig. 2. The two-dimensional velocity profile in the plane [0,0,1] and the droplets
iso-contour C = 0 at steady-state in a Couette flow.
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the correct pressure is immediately obtained with good agreement
between the numerical and analytical solution. One trend in Table
1 is that the error in pressure depends on the numerical resolution
of the interface. Another observation is that the correct pressure
jump is obtained even with wide interfaces.

2.5.2. Deformation of a droplet in Couette flow
The dynamic behavior of the surface tension force has also been

verified by validating the numerical solution of the deformation of
a three-dimensional droplet in a Couette flow. Taylor (1934)
derived analytically the deformation (D) of a droplet in a shear flow
in the limit of low Re numbers ðRe� 1Þ, which he also verified in
experiments,

D ¼ 19kþ 16
16kþ 16

Ca ¼ L� B
Lþ B

: ð17Þ

Here the viscosity ratio of the two liquids is k, L and B are the
major and minor axes, respectively. The Ca number Ca ¼ l _cd

r is de-
fined by the shear rate _c; l the viscosity of the continuous liquid
and d the droplet diameter. The deformation parameter D can be
extracted from experiments and numerical simulations by measur-
ing the major and minor axis when the droplet has reached steady-
state. A two-dimensional sketch of the domain and a schematic
description of the droplets minor (B) and major (L) axis is given
in Fig. 1. Initially the droplet is spherical and it deforms into an
ellipsoidal shape.

Table 2 gives the relative difference between the analytical and
numerical results for a droplet in a Couette flow for various Ca
numbers. All results are found to be in good agreement with the
analytical prediction from Taylor given in Eq. (17). Fig. 2 shows
the velocity vectors in a plane extracted at the center of the domain
with a normal ½0 � �ex;0 � �ey;1 � �ez� and the iso-surface of C = 0 is
describing the droplet shape. The simulation has reached steady-
state, meaning that the capillary force balances the viscous force
acting on the droplet. Three stagnation points are observed in the
extracted plane, one at the center of the droplet and the two others
are symmetrically placed at the left and right side of the droplet,
see Fig. 2.

2.6. Geometrical description of the domain

Droplet dynamics is investigated in a three-dimensional Y-junc-
tion described by the two-dimensional sketch given in Fig. 3,
where the z-direction goes into the plane of the figure. A velocity
profile with a shape of a paraboloid, with a non-dimensional mean
velocity �u ¼ 1, has been prescribed at the inlet of the parent chan-
nel, and a Neumann boundary condition is defined for the pressure.
A symmetric outlet condition is given for the pressure ðP ¼ 0Þ at
the upper and lower daughter branch. The parent channel has a
quadratic cross section L2, L being the width of the channel, and
B
L

x

y

z

u(y)

Fig. 1. Illustration of the Couette flow and a description of the minor (B) and major
(L) axis of a droplet at steady-state.
the daughter branches have a rectangular cross section L � LB,
where L is in the z-direction. The daughter to parent channel area
is L�LB

L2 ¼ 0:75 and h is the bifurcation angle. The droplet has initially
a volume Vi and the non-dimensional volume is defined as V ¼ Vi

L3.
The walls are hydrophobic, having an affinity of the continuous
phase, with an equilibrium contact angle of he = 180�. This prevents
wetting of the dispersed phase on the channel surfaces. The non-
dimensional numbers given in Eq. (16) are defined with the char-
acteristic length scale chosen as the width of the parent channel
Lc ¼ L and the reference velocity has been chosen as the mean
velocity at the inlet.

Droplets are an important part in microfluidic applications that
often consist of complex networks of channels. Microfluidic flows
are laminar, but the Re number can be greater than unity (Song et
al., 2003) as the droplets traverses through these complex geome-
tries. The focus here is on the detailed droplet dynamics in a generic
flow configuration at small scales, a bifurcating channel, rather than
simulating a whole microfluidic system. Here the Re number is
small, but larger than unity Re = 14.7 and Pe ¼ 1� 103, both kept
constant in all simulations. These non-dimensional numbers can
be interpreted as a flow consisting of two immiscible liquids with,
say, material properties similar to water ðq ¼ 103 kg=m3; l ¼
0:001 Pa sÞ with a bulk diffusion coefficient DB ¼ 1:47� 10�8 m2=s.
The continuous phase would then have a mean velocity at the inlet
U = 0.0147 m/s and the width of the parent channel is L = 1 mm.
These dimensions are typical of many microfluidic systems, see for
instance Song et al. (2003), Calderon et al. (2005) and Eshpuniyani
et al. (2005). The only material property we vary in the simulations
is the surface tension coefficient for the two phases; 1:4� 10�4

6

r < 7:8� 10�3 ð0:1 > Ca P 1:8� 10�3Þ.
The channel has an extension in the x-direction of about 10L. A

nearly equidistant mesh has been employed between the inlet and



Fig. 3. Geometrical description of the numerical domain.
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the straight section (in x-direction) of the branches, with few
skewed cells near the point of the bifurcation. L is discretized by
50 node points. In the straight section of the branches, where they
are aligned with the x-direction, has a coarse mesh with L � 10
node points in order to reduce the computational time. The exten-
sion of the branches ensures that the droplet behavior is not influ-
enced by the outlet boundary condition in the simulations. The
mesh consists of nearly 7.5 million tetrahedron elements and the
computational time on 1024 processors for a single case was about
24 h.

3. Freely evolving droplet dynamics

3.1. Flow regimes: splitting and non-splitting

In the quest to identify the parameters that govern the process
of droplet splitting or non-splitting in the junction, a set of simula-
tions with different Ca numbers and initial droplet size were per-
formed. Figs. 4–6 displays the three-dimensional droplet iso-
surface for C = 0 and the velocity field in the cross section, taken
at the center line in the channel, with a normal ½0 � �ex;0 � �ey;1 � �ez�.
In these three simulations the droplets have the same initial shape,
as a liquid slug, with the aspect ratio LD

H ¼ 2, a volume V ¼ 0:67 and
Cn = 0.06.

Fig. 4 describes the temporal droplet evolution with its velocity
vectors for Ca ¼ 3:0� 10�3. Fig. 4a shows the elongated droplet as
it is just about to come in contact with the edge of the junction. It
deforms symmetrically forming two identical liquid fingers in the
upper and lower daughter branch, which almost completely fill
the channel (Fig. 4b). The droplet rear forms a small curvature,
with a large radius, at the entrance of the bifurcation, bulging in
the upstream direction (Fig. 4b). A cylindrical liquid thread is
formed between the tip of the junction and the droplet rear, which
drains symmetrically into the branches, see Fig. 4c. As the circum-
ference of the thread becomes less than its normal length, the sur-
face tension force starts to contract it radially. This eventually
results in a pinch-off and the formation of two equally sized
daughter droplets, with a spherical shape. The two droplets prop-
agate downstream in the channel branches, and a thin film is
formed of the continuous phase, between the channel surface
and the droplet interface, see Fig. 4d.

Fig. 5 describes the temporal droplet evolution with its velocity
vectors for Ca ¼ 2:2� 10�3. In comparison with the results in Fig. 5
the capillary force is here just slightly stronger, resulting in an al-
most identical droplet shape as it approaches the junction (Fig. 5a).
Fig. 5b shows the droplet as it has deformed in the junction. Due to
the stronger capillary force it has a larger curvature at its rear than
observed Fig. 4b. The deformation of the interface converts work
done by inertial and viscous forces into surface energy, leading to
a deceleration of the droplet at the tip of the junction. Notice that
the magnitude of the velocity vectors inside the droplet is smaller
in comparison with the outer flow. It stays at the junction until the
incipience and growth of an instability similar to the Rayleigh–Pla-
teau (R–P) (Rayleigh, 1882) instability. This instability appears as
the length of the liquid thread exceeds its circumference, meaning
that its surface area can be reduced by breakup as this is energet-
ically favorable. The instability is here not initiated exactly at the
centre of the channel, causing a slight asymmetric drainage of
the liquid bridge, with a higher flow rate entering the lower branch
(Fig. 5c). Finally, the thread pinches off forming two droplets,
where the droplet in the lower branch is slightly larger than the
droplet in the upper branch (Fig. 5d).

Fig. 6 describes the temporal droplet evolution with its velocity
vectors for Ca ¼ 1:8� 10�3. By further reducing the Ca number, in
comparison with Figs. 4 and 5, through an increase in the surface
tension force, we observe a different droplet behavior. Initially,
the droplet approaches the junction in a similar fashion as reported
above. But the dominating surface tension force reduces the ability
of the inertia and viscous force to deform the droplet and it obtains
a quasi steady-state condition, with no internal flow, as it sticks in
the junction, see Fig. 6a.

Due to the stronger capillary force, a larger curvature is gener-
ated at the droplet rear, resulting in a larger radius of the liquid
thread. This has a direct consequence on the resulting droplet
dynamics, as the birth of a R–P instability is prevented. Although
the droplet preserves this state for several hundred time steps,
we find this sticking behavior to inherit an unstable nature as
the droplet always exits into one branch. The incipience of a
numerical disturbance, generates a slightly asymmetric flow in
the film formed between the droplet interface and the channel sur-
face, which initiates droplet slipping see Fig. 6b. As the perturba-
tion grows the droplet migrates into the lower daughter branch
(Fig. 6c). This leaves an asymmetric distribution of the phases in
the daughter branches and the droplet wrapping generates a flow
recirculation in the upper branch. For flows with Re� 1 such recir-
culation patterns would be absent, as they would be damped by
the viscosity. Finally the droplet propagates into the lower branch,
see Fig. 6d.



Fig. 4. Droplet dynamics in a bifurcating channel at four different snapshots in time with Ca ¼ 3:0� 10�3 and V = 0.67, in the splitting regime. The figure shows the iso-
surface for the order parameter C = 0 with Cn ¼ 0:06 and the velocity vectors in the plane [0,0,1].

Fig. 5. Droplet dynamics in a bifurcating channel at four different snapshots in time with Ca ¼ 2:2� 10�3 and V = 0.67, in the splitting regime. The figure shows the iso-
surface for the order parameter C = 0 with Cn = 0.06 and the velocity vectors in the plane [0,0,1].
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The temporal evolution of the surface area for the three cases
reported above are shown in Fig. 7. The vertical axis depicts the
non-dimensional droplet surface area, where Ai is the initial drop-
let area. The droplets have initially the same shape, but different



Fig. 6. Droplet dynamics in a bifurcating channel at four different snapshots in time with Ca ¼ 1:8� 10�3 and V = 0.67, in the splitting regime. The figure shows the iso-
surface for the order parameter C = 0 with Cn ¼ 0:06 and the velocity vectors in the plane [0,0,1].
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surface tension coefficients. As shown in Figs. 4–6, small variations
in the magnitude of the capillary force can have a large influence
on the droplets ability to deform in the bifurcation. We notice in
Fig. 7 that their initial shape is not being energy minimized,
explaining the small deviation from the value one at the first out-
put at T = 0.1. As the droplets approach the tip of the bifurcation
they deform in a similar manner, with a continuous decrease in
surface area. They obtain the same minimum surface area as the
major part of the droplet occupies the region, where the channel
bifurcates, see Fig. 7 at T � 1.5. At this place in the channel the
droplet is least confined between the walls, so that it attains a
shape with a surface area being less than what it had in the parent
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Fig. 7. The temporal evolution of the surface area for three droplets with different
Ca number, with V = 0.67 and Ai is the initial droplet surface area.
channel. As the droplets nose interacts with the tip of the junction
it deforms into its two branches. This leads to an increase in sur-
face area, where the three droplets deform in a similarly fashion
until the time T = 2. Around this time, the effect of the different
Ca numbers starts to manifest itself. The case with the lowest sur-
face tension force ðCa ¼ 3� 10�3Þ has a linear increase in surface
area from the time T = 1.5 until droplet breakup at T = 2.8. An
abrupt change in surface area is then observed, demonstrating that
splitting is energetically favorable. Afterwards, the two droplets
readjust into their equilibrium shape as they propagate into the
two daughter branches.

For the case with Ca ¼ 2:2� 10�3 the slope of the surface area in
time becomes different around time T = 2. Here the surface force
becomes comparable with the inertia and the viscous forces acting
on the droplet, which decreases the deformation. The change in Ca
changes also the temporal timescale in the flow, and breakup takes
place at T = 3.1.

The non-splitting droplet ðCa ¼ 1:8� 10�3Þ has a different
behavior than the two cases with lower surface tension coefficients
described above. Its surface area increases up to around time
T = 2.4, then its growth almost ceases with just a small change in
surface area until T = 3.3 when the droplet stops at the tip of the
bifurcation, see Figs. 6 and 7. Around T = 3.3 the droplet starts to
wrap into the lower branch, having a large effect on its surface area
that rapidly reduces by around fifteen percent between time
T = 3.2 and T = 3.7. As the droplet has migrated into the lower
branch it adjusts into its energy minimizing shape, obtaining a
lower surface area than it had at time T = 0. That its surface area
is less in the smaller branch than in the larger parent channel
may seem counterintuitive. This is due to that the speed in the
channel containing the droplet is decreased, giving a lower local
Ca, and thus a smaller droplet distortion.

Qi; QU and QL are the mass fluxes through the inlet, upper and
lower outlet, respectively, see Fig. 3. Fig. 8 shows how the
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non-splitting droplets influence the mass flow distribution in the
junction. The figure describes the ratio between the outflow in
the upper branch ðQ UÞ, which is not occupied by the droplet, and
the inflow ðQiÞ. It should be noted that by monitoring the ratio be-
tween the lower branch and the inlet produces a symmetric plot as
seen in Fig. 8. The splitting droplets, of equal size, produce a
symmetric outflow of the two daughter branches. The asymmetric
effect generated by the non-splitting droplets is clearly demon-
strated in Fig. 8 and portray that the droplets, although having
the same density and viscosity as the continuous phase, acts as a
flow resistance in the branch they occupy. This effect is primarily
generated by the interface, which is sensed by the outer flow.
We note that such an observation has also been made in droplet
experiments performed by Garstecki et al. (2005). The blue hollow
circles describe the mass flow ratio, in this context, of a large drop-
let, which does not obtain a steady outflow before entering the sec-
tion of the branch that is aligned with the x-direction.1 Nonetheless
for smaller droplets one can observe in Fig. 8 that there is a depen-
dence on the droplet size and the distribution of the continuous
phase in the two branches. These results reveal that the flow ratio
between the upper and lower branch converge towards a constant
value, depending on droplet size.

By monitoring the outflow ratio in time we can observe the
effect of the perturbation as the droplet wraps into the branch.
This is illustrative for the two cases, where the droplet has the
same size (V = 0.52), but different Ca numbers. For these cases
the path to the final outflow distribution between the branches
are highly different, but their final value is nearly the same. This
also shows, for the parameters space investigated here, that the
Ca number plays a minor effect with regard to the outflow ratio,
see Fig. 9.

By plotting the final outflow ratio between the upper and lower
branch, we find the relationship for the flow resistance that is
dependent on the droplet size, see Fig. 9. The outflow ratio is found
to depend linearly on the droplets volume, the dashed line in Fig. 9
is described by Q U

Q L
¼ 0:94þ 0:70V . The large droplet, see blue hol-

low circles Fig. 8, have been disregarded here as the outflow ratio
does not reach steady-state in the branch.
1 For interpretation of color in Figs. 8 and 10, the reader is referred to the web
version of this article.
3.2. Flow regime map

The droplet splitting or non-splitting phenomenon depends
mainly on the relative dominance of the surface tension force, rep-
resented in the Ca number. The resulting droplet dynamics seem to
also highly depend on its initial configuration, identifying the drop-
let size and the Ca number as two of the key parameters for the
definition of the multiphase flow characteristics in the junction.
Similar experimental observations have been made in both T- (Link
et al., 2004) and k-junctions (Menetrier-Deremble and Tabeling,
2006; Eshpuniyani et al., 2005). These parameters form a non-
dimensional space, which is explored in numerical experiments,
describing the relationship between the splitting and non-splitting
flow regimes as shown in Fig. 10.

Note in particular that there seem to be a distinct, well-defined,
condition for the flow regime transition between splitting and non-
splitting droplets. Close to this threshold we recognize that a slight
Fig. 10. Semi-logarithmic map of the splitting and non-splitting flow regime, the
dotted line has been added as a guide to the eye. The square markers are results
with Cn ¼ 0:06 and the circles Cn ¼ 0:08, hollow markers denote non-splitting and
filled markers splitting droplets. The dashed line describes the threshold for
splitting or non-splitting approximated by V ¼ �0:79� 0:53 � logðCaÞ.
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variation in droplet size or the surface tension force could have a
tremendous affect on the flow physics in the junction. These find-
ings identify that large droplets favor splitting and that such a pro-
cess is hard to obtain with small droplets. Strikingly, the threshold
for splitting or non-splitting falls on a single curve given by
V ¼ �0:79� 0:53 � logðCaÞ, see Fig. 10.

The red circles in Fig. 10 represent the results for simulations
with a thicker interface Cn ¼ 0:08. We note that the criterion for
splitting and non-splitting changes with the interface width. Close
to the splitting/non-splitting threshold it is expected that even
small changes in parameters, like the interface width, will have
an effect on the results. By reducing the interface width the split-
ting curve might shift slightly towards higher Ca numbers,
although the shape of the curve and the actual interfacial dynamics
are not believed to change significantly.

There are some salient points that need to be emphasized. We
note that the disturbance initiating droplet motion into the lower
branch in the non-splitting regime has a numerical nature. Flows
involving droplets that will not split or rigid particles that enter
a bifurcation are inherently unstable. Here the droplet always en-
ters the same branch, demonstrating that the perturbation is
numerically consistent for all cases. One hypothesis for the pertur-
bations is that there is a slight asymmetry in the mesh near the
point of bifurcation. Another explanation could be that this effect
is caused by the convergence criteria, even though they are small
at each time step ð� � 10�7Þ they are of finite size and accumulate
in time. In order to quantify the magnitude of the perturbation
needed to control the droplet motion, we introduce a small asym-
metry between the two outlet boundary conditions. This is done in
practice by restarting the simulations from a state when the drop-
let sticks in the junction, placing a small variation between the
pressure outlets. We observed that the droplet change branch
when a pressure difference of DP ¼ Pupper�Plower

Pin
� 0:04 is placed be-

tween the two branches, where Pin is the inlet pressure at the re-
started time step. This indicates the disturbance sensitivity
nature of the non-splitting flow regime and illustrates that the
symmetric placement of a drop at the junction is highly unstable.
Experimentally such unstable two-phase flow phenomena have
been observed in similar geometries by Baroud et al. (2006) and
Calderon et al. (2005).

4. Conclusion

The present paper reports on three-dimensional numerical
experiments based on Phase Field theory of droplet dynamics in
a bifurcating channel with symmetric outflow conditions. Two dis-
tinct flow regimes are identified as the droplets interact with the
junction, splitting and non-splitting. In particular we show the ef-
fects of the initial droplet size and Ca number on the resulting two-
phase flow characteristics.

Droplets that split equally, produce a symmetric distribution of
both phases in the channel daughter branches. Near the threshold
between the two regimes, we observe that the R–P instability can
be a driving parameter for droplet division.

In the non-splitting regime the droplet migrates into one of the
channel branches, leading to a strong temporal asymmetric flow in
the junction. A linear relationship is found for the droplet size and
the outflow ratio between the upper and lower branch. By placing
a small difference between the upper and lower outflow condition
we demonstrate the disturbance sensitive nature of the flow. This
is illustrating that a symmetric placement of the droplet in the par-
ent channel is highly unstable.

These results identify the Cahn–Hilliard Navier Stokes equations
solved with a finite element method as a viable computational plat-
form for the description of multiphase flow characteristics in com-
plex geometries at small scales. One prospect for the future is a
further description and identification of novel interfacial dynamics.
Future studies should include the influence of the tip geometry, mul-
tiple droplet interaction and wettability effects, in order to obtain
more pieces of the puzzle forming the physical picture of droplet
dynamics in bifurcating channels.
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